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A numerical technique based on the method of nearcharacteristics is used for solving non- 
linear fluid-transient problems in two-dimensional plane or axisymmetric geometries. The 
solution procedure is constructed by relating flow conditions through compatibility relations 
along nearcharacteristic lines which lie in coordinate planes. This leads to an efficient com- 
putational technique which is a direct extension of the one-dimensional method of char- 
acteristics and which requires only simple one-dimensional interpolations. &cause the 
nearcharacteristics fall outside the characteristic cone, the solution procedure refers directly 
to conditions outside the true domains of dependence. However, numerical calculations for 
simple example problems and comparisons with analytical and experimental results show 
that the nearcharacteristic procedure is in general as accurate as the bicharacteristic method. 
Von Neumann stability analysis for a linearized version of the numerical procedure reveals 
that the schemes based on a formulation in a single coordinate plane are unconditionally 
unstable. However, averaging the two unstable solutions yields a stable procedure with a 
stability criterion equivalent to that of the bicharacteristic procedure (cdt/dx < 0.5). 
Numerical experimentation verifies that these findings for the linearized system also apply 
to the nonlinear procedures. The ease of formulation of the nearcharacteristic equations 
and the numerical schemes, even for problems involving large numbers of independent 
variables or multitudes of characteristics, makes this technique attractive for application 
where alternate methods of characteristic approaches become too cumbersome or outright 
impossible. 

INTRODUCTION 

The method of characteristics is an efficient and informative technique for numerical 
integration of quasilinear hyperbolic systems of differential equations. Since the equa- 
tions are cast in a form that relates the conditions on lines along which physical 
disturbances travel, a close relationship is maintained between the numerical procedure 
and the physical phenomena. The stability of the numerical scheme is thus more 
easily controlled and the solution is, in general, more accurate than solutions by other 
direct finite-difference methods. 

The method of characteristics in two independent variables (referred to as the 
two-variable method) possesses an attractive feature in that the relations holding 
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along characteristics are ordinary differential equations that can easily be handled 
numerically. For more than two independent variables, however, the simplification 
is not as great, since the compatibility conditions are still partial differential equations. 
The bicharacteristic formulation [l-3] considers the characteristics selected such 
that the compatibility conditions, when put in a difference form, are essentially like 
ordinary differential equations. The solution can be constructed without referring 
directly to conditions outside the physical domain of dependence, i.e., the charac- 
teristic cone. On the other hand, the formulation procedure itself is extreemly difficult 
and bears no resemblance to the conventional two-variable method. This is especially 
true for four or more independent variables. 

To overcome these difficulties, Sauer [4] proposed a technique that represents a 
direct extension of the two-variable method. It considers lines (Sauer called these 
nearcharacteristics) that lie in any plane parallel to the time coordinate. The formu- 
lation procedure is similar to the conventional two-variable method, and a problem 
involving four or more variables presents no more difficulties than a three-variable 
problem. Since the nearcharacteristics, geometrically, are outside the characteristic 
cone, the solution is directly influenced by conditions outside the true domain of 
dependence, and it is not clear how this affects the numerical results. However, 
techniques with similar properties have been successfully employed in the past [5-61. 
The only known application of the nearcharacteristic formulation is that of Werner [7], 
who used it in conjunction with extrapolation techniques. He observed that the error 
of the solution increases as the nearcharacteristic deviates from the bicharacteristic. 

In this paper we consider the application of the nearcharacteristic method to the 
solution of two-dimensional plane or axisymmetric fluid-hammer problems. Pressure 
transients in piping systems are customarily calculated by the one-dimensional method 
of characteristics. The use of nearcharacteristics to treat two-dimensional regions 
becomes a natural extension and simplifies the transition between one and two- 
dimensional regions. Specifically we derive the nearcharacteristic formulations in two 
space dimensions and time. Finite difference approximations of these formulations 
as well as appropriate boundary conditions are developed. The stability of the finite- 
difference schemes is investigated using the Von Neumann criterion. Numerical 
calculations are carried out for sample problems with simple geometry and the results 
are compared with results obtained by a bicharacteristic formulation. Comparison 
is also made with existing analytical solutions and experimental data for a plane wave 
diffracting from a 90” corner. In addition, one-dimensional acoustic and numerical 
solutions are presented in support of the nearcharacteristic numerical results. 

BASIC DIFFERENTIAL EQUATIONS 

The basic differential equations governing the unsteady, compressible, inviscid flows 
are the conservation equations of mass, momentum, and energy. When compres- 
sibility is small, such as in liquids, the energy equation may be replaced by an isentropic 
condition in which the wave speed is assumed constant. The differential equations 
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describing the fluid-hammer transients in slightly compressible fluids are written in an 
Eulerian form for two-dimensional plane and axisymmetric geometries. 

Continuity: 

Momentum: 

(2) 

(3) 

Isentropic relation: 

aP 
( 1 
- zz 3. 
aP s 

(4 

In these equations, v = 0 for Cartesian and v = 1 for cylindrical geometry. Because 
of the small change in density, the derivatives of density are eliminated by combining 
Eqs. (1) and (4): 

g+ug+v$+Pc2(~+ au v$+- =o. 
ay 1 

Equations (2), (3), and (5) can now be used instead of Eqs. (1) through (4), with the 
density treated as a constant where it appears explicitly. 

NEARCHARACTERISTIC FORMULATION 

The above set of differential equations is of hyperbolic type and thus possesses real 
characteristics. Using the method of nearcharacteristics we look for characteristic-like 
lines that lie in coordinate planes that include the time-coordinate along which the 
solution can be extended. Choosing the y-t coordinate plane one proceeds, as in the 
two-variable case, by multiplying Eqs. (2), (3), and (5) by constants 01~ , CL~ , and I+, 
respectively, and forming a linear combination. Treating those terms containing 
partial derivatives in the x-direction like inhomogeneous terms of the differential 
equations, one obtains the expression 

aI $1 + (cql + a3pc2) s + a2 g + au ap 
a20 ay + a3 at + ( $ + a,v) g 

= --o(*u g - (a224 + a3pc2) $ - (7 + a34 g - a3vc2 :. (6) 

58112812-6 
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In order that the differentiation of all three variables on the left-hand side of Eq. (6) 
follow a single direction, the derivative coefficients must be proportional, i.e., 

This yields three linear and homogeneous equations for the 01’s, which have real and 
nontrivial solutions only if their coefficient determinant vanishes. From this condition 
three nearcharacteristic directions are obtained; dy/dt = 0, dy/dt = v + c, and 
dy/dt = v - c. 

Substitution of thus obtained a’s into Eq. (6) yields in turn the compatibility equa- 
tions along the three nearcharacteristics. Thus the nearcharacteristic relationships 
in the y-t plane are 

du 
i 

au 1 aP -=- 
dt =+Pz; i 

4 -=z)-c 
dt , 

u aP *$i_--; 
pi ax 1 Pb) 

(W 

du 1 dp aP ---~ 
dt pc dt 

=--ug+cg+v$+‘-. 
pi ax WW 

Proceeding in a similar manner for the x-t plane, one obtains the following near- 
characteristic relationships. 

dv -=- 
dt ( 

u”+--; 1 aP 
aY P aY j 

dx 
Tt=u-c> 

v ap ++--; 
PC aY 1 

du 1 4 ap __-- 
dt pc dt 

=c%zI-vv+i~++u_ 
ay ay PC aY 

(13b) 



FLUID-TRANSIENT BY NEARCHARACTERISTlC METHOD 215 

The above formulation may be recognized as a simple extension of the one-dimensional 
problem and it may further be extended to the three-dimensional case. 

The nearcharacteristic lines can best be visualized by considering the characteristic 
cone at a typical point P and its projection on a time plane At backward in time as 
illustrated in Fig. 1. Shown is the base circle of the cone, with center at Q and radius 

BICHARACTERISTIC 

FIG. I. Projection on x-y plane of characteristic cone and nearcharacteristics (lines joining p 
with points 1, 2, 3, 4, 5, and 6). 

c At, as well as a bicharacteristic which is a line joining the cone vertex P with the 
base circle. The projections of the nearcharacteristics and the particle path are the -- -- 
lines 6P, 4P, and @ in the y-t plane and the lines 5P, 3P, and p in the x-t plane. 
In the linear limit (U and u < c) points P and Q coincide and the nearcharacteristics 
coincide with the corresponding bicharacteristics. Similarly, the two sets of near- 
characteristic compatibility relations reduce to those of the bicharacteristic formu- 
lation, except for the form of the particle path relationship. In general, however, the 
nearcharacteristics intersect the time plane outside the base circle (points 1, 2, 3, 4) 
and thus they lie outside the true domain of dependence for the point as represented 
by the characteristic cone. In the application to fluid-hammer problems, this is not a 
serious drawback, since the fluid velocities are usually small. 

NUMERICAL PROCEDURE 

The two sets of equations, one written in the y-t plane and the other in the x-t plane, 
are completely independent and can be used to construct two independent solutions 
(provided that the procedure is numerically stable). In addition, we consider a proce- 
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dure in which these two solutions are averaged with equal weights. Since the right- 
hand sides of the compatibility equations contain partial derivatives (noncharacteristic 
derivatives) of all dependent variables, time-centering of these terms requires an 
iterative procedure. The iteration should be over the entire space domain in which the 
initial data can be used to form the initial guess for the iteration. This requires an 
excessive computer time; hence, consideration is limited to noniterative first-order 
schemes that involve errors of the same order of magnitude as the time step (also 
grid spacing through the stability condition). Using the notation and grid con- 
struction shown in Fig. 2, the following finite-difference equations can be written. 

In the y-t plane, 

Y  - Y,  = CD4 + 4 4 

In the x-t plane, 

+ $ (p - p3) = - [c $ + v $ + v + + -+ 31, At; (18b) 

- 

x - xg = u,dt, 

CU 
v- 

X 

(144 

(14W 

Wa) 

! au V-Q=- v--f-- 
aY 

1 ““) At; 
P ay 5 

-+ -% *] At; (15b) 
PC ax 4 

cu 
y+pcz, u ““1 At. (16b) 

(174 

x - x3 = (ug + c) 4 

x - x1 = (2.41 - c) At, WW 

$ (P - Pl) = [c g - v~+v~~+P2q At. ay 
PC aY 1 

VW 

Here the variables without subscript refer to the point at which the solution is to be 
obtained (point P). The subscripts identify the points in the current time-plane as 
shown in Fig. 2. Values of the dependent variables and the derivatives at these points 
are obtained by linear interpolation between the grid points. Combining the inter- 
polations for the velocities with the relations for the characteristic directions (such as 
Eqs. (14a), (15a), etc.), the location of the nearcharacteristic intersections with the 
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NEARCHARACTERISTICS t=?,+At 

FIG. 2. Finite-difference network. 

current time-plane are determined, e.g., for point 4 in Fig. 2, the following relationship 
holds. 

04 = VA + ““A; vA b4 - YA); 

Combining this expression with Eq. (Isa) yields 

Y4=Y+ 
At @A + c) 

At (VA - 2)H) - dy 1 

dy 

’ 
(20’4 

Analogous interpolations to Eq. (20a) are used for other variables. As for the spatial 
derivatives, the values at grid points are first calculated by central differences and these 
are next used to calculate the values at point 4, again by interpolation. The derivatives 
of v at grid point A, for example, are calculated: 

av 
-I ax A= 

VG - DF . 

2Ax ’ 

av 
ay Ag 

VI - VH 
2Ay ’ 
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Similar expressions hold for all other variables and for all grid points. 
Next, the compatibility equations are used to solve for the variables at point P. 

For the solution in the x-t plane, Eq. (14b) can be used directly to determine the 
x-coordinate velocity U. Combination of Eqs. (15b) and (16b) yields explicit expres- 
sions for the y-component velocity v and the pressure, p i.e., 
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p = ; /pc(v4 - VJ + (p1 + PJ - pc [u g + c g + y 5 + -$ %I4 At 
r 

- PC I 
8P -+ +c%+y$+~-] At 

. PC ax 2 

In an analogous manner, the solution is obtained in the x-t plane. Eq. (17b) directly 
yields the y-component velocity; and the x-component velocity as well as the pressure 
are computed by appropriate combination of Eqs. (18b) and (19b). 

Finally, to improve the solution at point P, one can average the results obtained from 
the y-t plane and x-t plane nearcharacteristic solutions. 

BOUNDARY CONDITIONS 

On the boundaries, some of the nearcharacteristics fall outside the computational 
domain. The corresponding compatibility conditions are then not available and must 
be replaced by appropriate boundary conditions. Here we consider boundary con- 
ditions that are consistent with inviscid flows. Walls are treated as rigid on which the 
normal velocity component vanishes while the tangential component is left free. On the 
axis of symmetry for the cylindrical coordinates, i.e., x = 0, the radial velocity 
component is set equal to zero and the term u/x is replaced by au/ax. 

The computational modifications required at a boundary are best illustrated by an 
example. Consider point P in Fig. 2 to lie on a rigid wall parallel to the x-axis, the 
flow regime is then bounded by the line GAF and grid points D, I and C are outside 
of the computational domain. The nearcharacteristic procedure in the x-t plane, i.e., 
along the wall, remains essentially unaltered, except that a number of quantities can 
apriori be set equal to zero. Since the normal velocity v vanishes everywhere along 
the wall, it follows that at the wall au/at = 0, and au/ax = 0. This in turn gives, by 
Eq. (2), aplay = 0. The equations for the tangential velocity and pressure then reduce 
to the form 

- c*+ “% 
ay 1 Ati 

x 3 I’ (26) 
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-pc2 *+v$;At. 
[ aY 1 I 

The variables and derivatives at points 1 and 3 are again obtained by linear inter- 
polations. The derivatives in the direction normal to the wall for points on the 
boundary can now only be evaluated by sided difference equations, e.g., 

8V 
- Ezz 
+ A 2y . (28) 

- 
The nearcharacteristic 2P (see Fig. 2) lies outside the flow region and cannot be 

used in the y-t plane solution. Since the velocity along the boundary is parallel to the 
x-direction, point 6 is coincident with point A and Eq. (14b) is used directly (without 
interpolation) to calculate the velocity u at point P. The remaining characteristic 
relationship along line @ is used to obtain the pressure at point P (Eq. (15b) with 
v = 0, au/ax = 0): 

aP c$+vG+L- 1 1 PC ax 4 
At. 

Again the results obtained in the x-t plane and y-t plane are averaged. Analogous 
equations and procedures apply to other rigid surfaces. 

At corner points, both components of the velocity vanish, i.e., u = v = 0, and 
only one nearcharacteristic line in each coordinate plane lies within the domain. The 
compatibility relation along this line is used to calculate the pressure. 

The boundary treatment can be extended to include moving walls for which the 
normal velocities are either prescribed or can be computed from an auxiliary 
procedure. This allows for a coupling between fluid and boundary motions. It is often 
desirable to couple two-dimensional and one-dimensional flow regimes [3]. At such 
transition boundaries, it is assumed that the radial velocity u vanishes and that the 
axial velocity v is uniform over the cross section and takes on the value predicted by 
one-dimensional analysis. 

NUMERICAL STABILITY 

The necessary condition for convergence and stability for hyperbolic problems is 
provided by the Courant-Friedrichs-Lewy (CFL) criterion [8]. It requires the domain 
of dependence of the approximate difference system to contain the domain of depen- 
dence of the exact differential system. Sauer [4] has shown that a nearcharacteristic 
scheme satisfies the CFL criterion as long as the intersections of the nearcharacteristic 
lines (points 1, 2, 3 and 4 in Fig. 1) fall within the rectangle which is tangent to the 
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base circle of the characteristic cone. This condition is automatically satisfied for all 
subsonic flow velocities and always holds true for the fluid-hammer application 
considered here. For the finite-difference grid network shown in Fig. 2, this also implies 
that the time step must be so chosen that all the nearcharacteristics fall inside the 
rectangle BCDE, i.e., no disturbance should traverse more than one grid spacing 
during each time step. 

While the CFL criterion is necessary for convergence, experience indicates [9, lo] 
that the conditions which are sufficient for the convergence and stability of multi- 
dimensional explicit hyperbolic numerical schemes are usually more stringent. The 
finite-difference procedures derived here are based on first-order Taylor series 
expansions and represent consistant numerical analogs which reduce to the near- 
characteristic differential equations as dx and dt approach zero. At the same time, 
the ratio &/Ax remains fixed and does not vanish since it must satisfy the CFL 
criterion. Thus, to prove convergence of the numerical schemes, it is sufficient to 
establish their stability. 

In general, it is not possible to establish exact stability criteria for nonlinear systems 
such as those used here [IO]. Following the usual practice, we investigate the stability 
of a linearized system by assuming small convective terms (u, o < c). Specifically, 
a von Neumann analysis is performed for the three numerical schemes (y-t plane 
solution, x-t plane solution, and the averaging scheme). Since the results of the 
stability analyses on a linear system are only a guide for the nonlinear system stability, 
and must be verified by numerical experimentation, we simplify further by inves- 
tigating only the two-dimensional plane case (V = 0) and by assuming uniform and 
equal grid spacing in the X- and y-direction (dx = dy). These assumptions lead to 
the following simplifications (see Fig. 2). 

Ix-x11 = Ix-xxgj = Iy-yyzI = Iy-yy,/ =6Llx=cdt; VW 

1 x - xg 1 = 1 y - y6 1 = 0. W’b) 

To proceed with the stability analysis the dependent variables are written as a double 
Fourier series, and each component is examined as to its growth with time. A Fourier 
component of the dependent variable U, for example, at a location x = j dx, y = 
k dy, and at any time t = n dt is expressed as 

u(j Ax, k dy, n At) = u,,nei6jAxeivkAy. (31) 

The same variable at the next time step t = (n + 1) dt is written as 

ub Ax, k dy, (n + 1) At] = $+1ei45dxei”kAu. (32) 

Here p and y are the wave numbers associated with the x- and y-coordinates, and u,,” 
and u{+l are the time factors at the current and advanced time levels, respectively. 
Similar expressions can be written for the other two dependent variables ZI and p. 
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The substitution of these expressions into the linearized numerical schemes yields 
after simplication a linear system of equations for the time factors of the form 

where A is the amplification matrix. For numerical stability, the spectral radius of the 
amplification matrix (i.e., the maximum of the absolute value of the eigenvalues) 
must be less than or equal to unity. 

Consider the scheme in the x-t plane and substitute the Fourier expansions into the 
linearized versions of Eqs. (17b), (22) and (23). This together with linear interpolation 
for the variables and their derivatives at the points of nearcharacteristic intersection 
with the current time plane, yields the amplification matrix 

1 0 
A,-t = 

i 
-P(sin p dx)(sin y Lly) 1 - S(l - cos y Lly) 

-zS(sin fl dx)[l - S(l - cos y Lly)] -2 sin y dy 

---is sin /3 Ax 
-iS sin y Ay 

1 
* (34) 

1 - S(1 - cos y Ay) 

The eigenvalues A of this matrix are then determined by the cubic values of the parameters p Ax and y Ay revealed that eigenvalues of 
a magnitude greater than unity exist. In fact, the choice of sin y Ay = 0 and 
cos y Ay = 1 yields 

h = 1 + iS sin /I Ax 
or 

1 h 1 = (1 + S2 sin2 /? Ax)~/~ > 1 (36) 

for all values of S # 0. This is a sufficient proof that the numerical scheme in the x-t 
plane is unconditionally unstable. From the complete symmetry of the x-t and y-t 
schemes, at least in the plane case, one obtains directly for the latter when sin /I Ax = 0 
and cos j? Ax = 1, 

( A [ = (1 + S2 sin2 y Ay)li2 > I. (37) 

Thus again the finite-difference scheme in the y-t plane is unconditionally unstable 
for all nonzero values of 6. 
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Applying the same procedure, as outlined above, to the linearized solution scheme 
using the average of the x-t and y-t plane solutions, one obtains the amplification 
matrix 

i 

2 - S(1 - cos /!3 AX) -S2(sin /I dx)(sin y dy) 

A,-,-, = ; 
-S2(sin /I dx)(sin y dy) 2 - S(l - cos y dy) 

-iS(sin /3 Ax) -iS(sin y Ay) 
. [2 - S(1 - cos y dy)] * [2 - S(1 - cos p Ax)] 

-i 26 sin /3 Ax 
-i2S sin y By 

2 - S(2 - cos ,f3 Ax ; (38) 

- ~0s Y Au) 1 

and the third-order polynomial for the eigenvalues, 

[2(1 - A) - S(1 - cos /3 Ax)]([Z(l - X) - S(1 - cos y dy)][2(1 - h) (39) 

- S(2 - cos ,8 Ax - cos y Ay)] + 2S2 sin2 y Ay[2 - S(1 - cos /3 Ax)]) 

+ S4(sin2 /3 Ax)(sinz y Ay){2[2 - S(l - cos y Ay)] + 2[2 - S(l - cos/3 Ax)] 

- [2(1 - A) - S(2 - cos /? Ax - cos y Ay)]} 

+ 2S2(sin2 /I Ax){[2 - S(l - cos y Ay)J[2(1 - h) - S(l - cos y Ay)]} = 0. 

Again, the general solution of Eq. (39) cannot be obtained; hence, various specific 
values of /3 Ax and y Ay were considered. It appears that the most stringent condition 
on 6 results from the choice p Ax = 0, i.e., sin fi Ax = 0 and cos /3 Ax = 1 which 
yields 

h = [l - (S/2)(1 - cos y By)] f iS sin y Ay. (40) 

Finally, the requirement j A j < 1 yields the following stability condition for the 
averaging scheme. 

c Ar cAt 1 
“=dx=- AY 

$. (41) 

For uniform and equal grid spacings, this result can be more generally expressed as 

Ax Ax, ---‘+- dy, dy, 
Ax Ax + Ay + At < 2, 

where Ax, = 1 x - x1 1, etc., and Ax and Ay are the grid sizes. The time step required 
for stability is thus one-half of that required by the CFL criterion. This is a stability 
requirement identical to that of the bicharacteristic scheme [3]. The stability analysis 
was carried out using the linearized equations and thus, can only serve as a guide for 
the complete nonlinear system. Nevertheless, extensive numerical experimentation 
with the nonlinear equations verified the results obtained above. The most significant 
finding is the fact that the x-l and y-t plane solutions are unconditionally unstable, 
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and that averaging of the coordinate plane solutions is required to obtain a stable 
computational scheme. This is in contrast with Sauer [4], who only states that 
averaging will enhance the accuracy of the solution. 

NUMERICAL RESULTS 

In order to examine the general behavior and accuracy of the stable numerical 
procedure that uses the averaging technique, an acoustic problem is considered in 
which a plane wave diffracts from a 90” sharp corner. Both an analytical solution 
obtained by Keller [12] and experimental data by White and Bleakney [13] exist for 
this problem. The latter employed a 12 % overpressure step wave. The analytical 
solution is based on Busemann’s conical flow method [ 141 by which the wave equation 
is transformed into Laplace’s equation. The potential problem in the circular sector 
is next solved by a conformal mapping into a unit cirlce. 

A comparison of the pressure profiles along the edges of the wedge obtained by the 
nearcharacteristic procedure with the analytical and experimental results is givey in 
Fig. 3. Also shown is the numerical solution obtained by the bicharacteristic procedure 
as given in [3]. Both numerical solutions used uniform and equal grid spacings in 
both the x- and y-directions. The grid points are placed on the wedge surfaces, 

- ANALYTICALSOLUTION 

---- EXPERlMENT[I3] 
A 

0 0 0 NEARCHARACTERISTIC METHOD 

A A A BICHARACTERISTICMETHOO 

0 0.5 

X 

1.0 

FIG. 3. Diffraction of plane acoustic wave from 90” sharp edge. 
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starting from the one at the corner. The profiles shown in Fig. 3 are the results after 
21 step calculations with c dt/Ox = 0.475, so that the diffraction wave front traversed 
10 grid spacings. The two numerical solutions exhibit about the same accuracy and 
are in reasonably good agreement with the analytical solution and the experimental 
results. Their main shortcoming is the smearing of the wave front which is due to the 
numerical dispersion resulting from the restrictive time step requirements for conver- 
gence and stability. The discrepancy between the experiment and both the analytical 
and numerical results near the wedge corner is attributed to the viscous vortex effects 
which are not accounted for in the analyses. The initial condition used is the no-flow 
condition, so that at t = 0, the flow starts to accelerate due to the pressure disconti- 
nuity. For computational convenience, the pressure discontinuity was placed one grid 
spacing to the left of the corner so that the corner diffraction starts at approximately 
two time steps. 

Close examination of Fig. 3 reveals some oscillatory behavior of the near- 
characteristic results which is not present in the other solutions. To examine this 
behavior more closely, Fig. 4 presents pressure-time histories at points F and G 
located on the wedge faces a distance “a” away from the corner. Again the near- 

0.5 - ANALYTICAL SOLUTION 

l l l NEARCHARACTERISTIC METHOD 

j +I . . ':""ARACTE":""""OD, 

0 IO 20 30 40 
STEP NUMBER 

FIG. 4. Pressur&me history at points fixed on wedge faces (c&/a = 0.095; cAt/x = 0.475; 
Ax = Ay). 
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characteristic solution is compared with Keller’s analytical solution and also with the 
bicharacteristic result. The nearcharacteristic result exhibits oscillations (apparently 
with diminishing amplitudes) about the analytical solution. While the bicharacteristic 
results follow the analytical solution without oscillation, they appear to exhibit 
somewhat more dispersion and damping in the vicinity of the wave front than the 
nearcharacteristic prediction. 

Numerical calculations are further performed for a simple axisymmetric geometry 
involving a sudden expansion and contraction. Diameter ratios (ratio of the larger 
to the smaller section diameters) of 2 and 7 are considered, as shown in Fig. 5. The 

+---15in.+27in+ 

FIG. 5. Sample problem. 

corresponding aspect ratios (length to radius of the larger cross section) are 2.0 and 
0.572, respectively. A step pressure pulse is imposed far upstream of the area change 
(with 1000 psi overpressure). The system is initially at zero pressure and velocity and 
is filled with water. To minimize the computational effort, the domain is divided into 
two regions. The two-dimensional region comprises the central part including 
expansion and contraction, and the remainder of the system is treated as one- 
dimensional. Since the nearcharacteristic formulation in the one-dimensional domain 
reduces to the two-variable problem, at the interfaces between the two regions it is 
assumed that u = au/ax = &/ax = +/ax = 0. Square grids (dx = dy) are 
employed and a time step slightly smaller than required by the von Neumann 
condition is chosen. The computational domain is half of what is shown in Fig. 5 
(axial symmetry). Five grids were used across the radius of the small diameter pipe 
section and as many grids as necessary axially to fill the entire domain. The dimensions 
chosen were such that grid points are placed along all boundaries. The interfaces 
between the I-D and 2-D domain are placed two small-diameter lengths upstream 
and downstream from the area transitions to obtain a smooth flow transition. This 
way, the artificial disturbance is minimized. A step pulse is introduced at the upstream 
interface and subsequent transients are calculated. 

Figure 6 presents a sample of the results obtained in the course of numerical 
verification of the stability analysis. Pressure-time histories at point G (see Fig. 5) 
for the three numerical schemes are shown. These, as well as calcluations with smaller 
time steps, verify that the x-t and y-t plane schemes are unstable for all time steps, 
while the von Neumann criterion established for the linearized system is a sufficient 
condition for stability of the averaging scheme. 
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._ 
G SCHEMEl(r-tPLANE1 

FIG. 6. Nondimensional pressure at point G obtained by three numerical schemes (0~ = 1000 psi; 
dia. ratio = 2). 

Figures 7-9 compare the results of the stable averaging scheme with the results 
obtained by the bicharacteristic method [3]. The two solutions differ most when large 
pressure gradients occur. Thus, in Fig. 7, at point G, the largest differences occur 
during the passage of the wave front. Neither numerical solution for point G reaches 
the theoretical peak pressure value of unity (1). This is mainly due to the fact that the 
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FIG. 7. Nondimensional pressure at point G comparing nearcharacteristic with bicharacteristic 
solution (dp = 1OOOpsi). 
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FIG. 8. Nondimensional pressure at point K comparing nearcharacteristic with bicharacteristic 
solution (dp = 1000 psi). 
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FIG. 9. Nondimensional pressure at point H comparing nearcharacteristic with bicharacteristic 
solution (dp = 1000 psi). 

wave arriving at the sudden expansion in the numerical calculation is already dispersed. 
The same phenomenon would prevail for any finite difference method having the 
similar restrictive stability requirements. The nearcharacteristic solution is closer to 
the expected theoretical peak value of unity than the bicharacteristic results. On the 
other hand, the nearcharacteristic solution exhibits an oscillatory behavior behind 
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the wave front which is similar to that experienced in some direct finite-difference 
calculations, particularly for Courant numbers (c At/Ax) as small as 0.5 [9]. Both 
methods perform much better in regions where the gradients are less stepp: such as 
point K (Fig. 8) and point H (Fig. 9). Generally, a good agreement exists between the 
two solution methods. 
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FIG. 10. Nearcharacteristic solution at points G and K in comparison with one-dimensional 
acoustic and numerical solutions. 
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FIG. 11. Nearcharacteristic solution at point H in comparison with one-dimensional acoustic 
and numerical solutions. 
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To establish the overall validity of the two-dimensional nearcharacteristic method, 
comparisons are also made with one-dimensional acoustic [I 51 and method of 
characteristic calculations. These are presented in Figs. 10 and 11. The two- 
dimensional results, in the large, follow the one-dimensional calculations; in particular, 
at points away from the central region (e.g., point H in Fig. 1 l), where two-dimen- 
sional effects are small. As expected, the biggest differences appear in the sudden 
expansion region (point G at the time of wave front passage) where the two- 
dimensional effects are most important. These effects become more pronounced for the 
larger diameter ratio. The one-dimensional solutions are here inadequate since they 
predict average cross-sectional values rather than local pressure-time histories. 
Therefore, this early time behavior should not be used for validating the near- 
characteristic solution. More important is the late time behavior where two- 
dimensional effects become minimized. It can be seen that then the nearcharacteristic 
results do indeed approach the values obtained by one-dimensional calculations, thus 
indicating the overall validity of this solution. 

CONCLUSION AND DISCUSSION 

The preceding presents the formulation of the neracharacteristic method and its 
application to the solution of two-dimensional fluid-hammer problems. The near- 
characteristic lines, along which numerical integration is carried out, fall outside the 
characteristic cone (true domain of dependence). It is nevertheless shown that viable 
solutions may be obtained. A von Neumann stability analysis, for the linearized 
version of first-order finite-difference formulations, demonstrates that solution 
schemes which consider nearcharacteristics only in one coordinate plane, the x-t 
plane or y-t plane, are unstable. However, a scheme based on averaging the unstable 
solutions yields a stable procedure, with a stability limit equal to that of the bi- 
characteristic formulation [3]. These results were verified for the nonlinear formulation 
by numerical experimentation. This finding contrasts the statement of Sauer [4], that 
the averaging of the coordinate plane solutions is only recommended to enhance the 
accuracy of the computational results. 

The nearcharacteristic solutions are in general as accurate as those obtained by the 
bicharacteristic method. This is demonstrated by comparison with both one- and 
two-dimensional analytical and numerical results. However, the nearcharacteristic 
results exhibit an oscillatory behavior which is particularly pronounced in regions 
of steep gradients. In this respect the method resembles certain finite-difference 
schemes in which these oscillations can often be suppressed by refinements in the 
numerical algorithms. The exact source of the oscillations is presently not known. 
Since they do not appear in the bicharacteristic solution, they may be associated 
with the fact that in the nearcharacteristic formulation, direct reference is made to 
values lying outside of the true domain of dependence. 

The nearcharacteristic method is competitive with direct finite-difference methods 
because of the speed of computation. Since this approach is a direct extension of the 

$31/28/2-7 
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two-variable method of characteristics, it can be readily formulated and is compatible 
with the typical one-dimensional fluid-hammer formulation. This facilitates the 
coupling between one- and two-dimensional computational regimes. While near- 
characteristic schemes which do not lie in the coordinate planes may be formulated [4] 
(e.g., one could choose planes containing bicharacteristic directions), such an approach 
would negate the simplicity of the method, and would offer little advantage over the 
bicharacteristic method. The ease of formulation, even for cases of more than three 
independent variables, or when multiple sets of characteristics exist, as is the case in 
some solid mechanics problems, is a significant advantage of the nearcharacteristic 
method. For these problems, it is often difficult, or outright impossible, to formulate 
alternate methods of characteristic approaches [ 161. 

APPENDIX: NOMENCLATURE 

Speed of sound 
Static pressure 
Pressure pulse magnitude 
Entropy 
Time 
Time step 
x-component velocity 
y-component velocity 
x-coordinate 
Grid size in x-coordinate 
y-coordinate 
Grid size in y-coordinate 
Density 
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